
UNIVERSITY OF
CALIFORNIA



Fast IOC searching with a columnar 
database (ClickHouse)

Michael Smitasin
Cyber Security Engineer

security@lbl.gov 2019-04-17

June 28th 2016



UNCLASSIFIEDTLP:WHITE

Quick intro
● First NSM Meeting!

● Started cyber security in May 2018

● LBNL since Aug 2013

● Public Sector / R&E since 2008

● Background was previously network engineering
○ some sysadmin, vm/storage admin, desktop support prior



UNCLASSIFIEDTLP:WHITE

The Problem
● Determine if there are "hits" on IOCs as quickly as possible

● Reduce Mean-Time-To-Innocence

● The Prompt:
○ "Tell me if this IP address was seen in the last 90 days in less than 1 sec"

■ (or last 3 years in ~a few secs)



UNCLASSIFIEDTLP:WHITE

The traditional solutions
● Recursive grep

○ zfgrep -r 192.0.2.49 
/data-BRO/bro-NFS/WIRED/logs/2019/*/*/conn.log*

○ exec time: ~28 hours for ~44.6 billion rows (~90 days)

● GNU parallel
○ find /data-BRO/bro-NFS/WIRED/logs/ -type f -name "conn.log*" | 

parallel -j90 --eta 'zfgrep 192.0.2.49 {}'
○ exec time: ~19 mins for ~44.6 billion rows (~90 days)



UNCLASSIFIEDTLP:WHITE

The traditional solutions
● Row-oriented databases

○ SELECT ts, id.orig_h, id.resp_h WHERE id.orig_h = '192.0.2.70' or 
id_resp_h = '192.0.2.70' 

○ exec time: I didn't actually test it

ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto conn l_orig l_resp missed hist

1542095993.756999 CJ5v1C4k7aYxGIqVe2 192.0.2.10 44148 192.0.2.247 20128 tcp S0 F T 0 S

1542095993.766248 CMFxyc3oa9qzV0P8Je 192.0.2.27 31458 192.0.2.67 199 tcp S0 F T 0 S

1542095993.766739 CslQAF8lYtdz6UIzb 192.0.2.27 31458 192.0.2.70 554 tcp S0 F T 0 S

1542095993.769726 CEvs5o4XX361jjczVl 192.0.2.220 43180 192.0.2.255 23 tcp S0 F T 0 S

1542095993.773877 C2McX695kczyZ520vc 192.0.2.11 56428 192.0.2.141 44974 tcp S0 F T 0 S

1

2

3

4

5



UNCLASSIFIEDTLP:WHITE

The new solution
● Columnar database (ClickHouse     )

○ SELECT ts, id.orig_h, id.resp_h WHERE id.orig_h = '192.0.2.70' or 
id_resp_h = '192.0.2.70' 

○ exec time: ~21 secs for ~44.6 billion rows (~90 days)

ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto conn l_orig l_resp missed hist

1542095993.756999 CJ5v1C4k7aYxGIqVe2 192.0.2.10 44148 192.0.2.247 20128 tcp S0 F T 0 S

1542095993.766248 CMFxyc3oa9qzV0P8Je 192.0.2.27 31458 192.0.2.67 199 tcp S0 F T 0 S

1542095993.766739 CslQAF8lYtdz6UIzb 192.0.2.27 31458 192.0.2.70 554 tcp S0 F T 0 S

1542095993.769726 CEvs5o4XX361jjczVl 192.0.2.220 43180 192.0.2.255 23 tcp S0 F T 0 S

1542095993.773877 C2McX695kczyZ520vc 192.0.2.11 56428 192.0.2.141 44974 tcp S0 F T 0 S

1                                                2



UNCLASSIFIEDTLP:WHITE

The new solution: even faster
● Columnar database (ClickHouse     )

○ SELECT date, ip WHERE ip = '192.0.2.70'
○ exec time: ~1sec for ~101.2 billion rows (~90 days)

date ip
2018-11-12 192.0.2.10
2018-11-12 192.0.2.27
2018-11-12 192.0.2.27
2018-11-12 192.0.2.67
2018-11-12 192.0.2.70
2018-11-12 192.0.2.247

2018-11-13 192.0.2.11
2018-11-13 192.0.2.141
2018-11-13 192.0.2.220
2018-11-13 192.0.2.255

partition=2018-11-12

partition=2018-11-13

● IPs are sorted within each partition (day)

● Each conn has 2x rows (1 for each IP)

● We can't tell if the IP was src or dst
○ (see page: Workflow)

1



UNCLASSIFIEDTLP:WHITE

ClickHouse
● Free, Open Source

● Off-the-Shelf

● Easy to install
○ Debian/Ubuntu easiest, official
○ RHEL/CentOS/Fedora doable, used to be unofficial, less tested
○ Maybe BSD ports, could also compile from source
○ Docker containers available

● Developed/used by Yandex (.RU equivalent of Google)



UNCLASSIFIEDTLP:WHITE

Examples
● 90 day searches:

○ 1.1.1.1 ~0.733s
○ 8.8.8.8 ~1.746s
○ 128.15.* ~0.658s

● 3 year searches:
○ 1.1.1.1 ~1.698s
○ 8.8.8.8 ~5.742s
○ 192.0.2.242 ~1.606s (negative result)



UNCLASSIFIEDTLP:WHITE

Workflow

Feeds Clickhouse
GNU 
Parallel 
zfgrep logs

IOCs
FILE,IP
vectors

Only
Matched 
Logs Final

Analysis

Feeds
GNU 
Parallel 
zfgrep logs

IOCs Results Final
Analysis

No Action 
Needed

No Hits

O
LD

N
EW



UNCLASSIFIEDTLP:WHITE

Just an indexer?
● Primary mission is indexer

○ Negative response ASAP
○ Positive responses -> targeted, rich searches
○ Could optimize further (uniq IPs, exclude local IPs) but...

● Secondary mission
○ Connection counts = cheap, interesting
○ ClickHouse = fast analytics:

■ Top10 (orig_cc, proto, resp_p) where conn_state=S0
■ Top10 (5-tuple) where conn_state=SF and pkts<2
■ Top10 non-US orig_cc services by bytes



UNCLASSIFIEDTLP:WHITE

Integration
● Query script… 'clicksearch-ip-fast.sh -C 8.8.4.4 -90'

○ Search type, IP, days
○ Wrapper for queries over SSH
○ Ease-of-use
○ Portability

● Ingest script… 'PUSH:Clickhouse-zeek'
○ Nightly cron
○ SCPs log files
○ Formats and filters data



UNCLASSIFIEDTLP:WHITE

Hardware
● Proof-of-Concept (now)

○ Supermicro X10DRi
○ Intel E5-2650 v4 @ 2.20GHz
○ 48 cores (HT)
○ 128GB RAM
○ 2x 240GB SSDs in RAID 1

● Production (soon)
○ Supermicro X10QRH+
○ Intel E5-4669 v4 @ 2.20GHz
○ 176 cores (HT)
○ 512GB RAM
○ 18x 2TB SSDs in RAID 10

● More cores, lower clock speed is better than fewer cores, higher clock speed
● LBL currently uses 1 box but ClickHouse supports HA, clustering/sharding
● I haven't done any special tuning for ClickHouse (yet)



UNCLASSIFIEDTLP:WHITE

PoC Lessons Learned
● Schemas & data formatting… picky

● Partitioning for "ring buffer" (default month… can do day)
○ Have to drop a partition, can't just drop rows by date

● Pre-sorting = speed!
○ 90 day search = ~1s sorted, ~20-30s unsorted

● Can ingest 3 years, only SELECT 90 days, still fast

● SELECTing more columns affects search time!



UNCLASSIFIEDTLP:WHITE

8.8.8.8
Avg: 1.12M / day
Total: 1.22B

1.1.1.1
Avg: 3.89K / day
Total: 4.06M

8.8.4.4
Avg: 26.33K / day
Total: 28.72M

(all strict queries)

1,095 day data set
728B records

(-C = WHERE ip='x.x.x.x')



UNCLASSIFIEDTLP:WHITE

time clickhouse-client 
--query="select [NxCOLUMNS] 
from 
zeek_conn_log_full_nonoptimized 
order by [Nth COLUMN] desc limit 
10"



UNCLASSIFIEDTLP:WHITE

Architecture

clickhouse

Paranoia Level 0.5 Paranoia Level 1 Paranoia Level 2

CPPnetcrunch box

Hitachi filesystem

logs

clickhouse

CPPnetcrunch box

Hitachi filesystem

logs

clickhouse

CPPnet

crunch box

Hitachi filesystem

logs

● clickhouse-server and clickhouse-client both run on "clickhouse"
● everything else interacts with it via SSH
● designing for Paranoia Level 2 just in case

locally connected
to crunch box,
no other connectivity



UNCLASSIFIEDTLP:WHITE

Size / Capacity Planning
Flavor of Data Est. Size Est. Duration

Date/IP Index only 102 GB 1,095 days (3 yrs)

Date/IP Index only 16 TB 114,213 days (313 yrs)

More log files, full columns 16 TB 800 days (2.2 yrs)

More log files, full columns (search speed 
optimized by sort key)

16 TB 496 days (1.4 yrs)



UNCLASSIFIEDTLP:WHITE

Future
● New, faster hardware
● Config tuning (memory, threads)
● More storage, more days of data
● More columns in conn.logs
● Multiple indices?

● Other data sets
○ More Zeek(bro)

■ DNS logs
■ File logs
■ HTTP logs
■ SMTP logs

○ Syslog
■ DNS query logs



UNCLASSIFIEDTLP:WHITE

Resources
● ClickHouse Docs:

https://clickhouse.yandex

● Justin Azoff's Clickhouse Talk at BroCon17
○ https://youtu.be/EeW0VXLv6dc?t=684

● NCSA Clickhouse Stuff:
○ https://github.com/ncsa/bro-clickhouse

● Some LBL Scripts and examples:
○ https://github.com/michaelsmitasin/lbl-cpp-clickhouse



UNCLASSIFIEDTLP:WHITE

Questions? Suggestions?
● DOE NSM Mattermost: lbnl.mnsmitasin

● mnsmitasin@lbl.gov

● security@lbl.gov



UNCLASSIFIEDTLP:WHITE

Bonus: Google BigQuery?
● (public ~Jul 2018 prices)
● Active Storage: $0.02/GB after 10GB
● Long-Term Storage: $0.01/GB after 10GB
● Streaming Inserts: $0.01/200MB
● Queries: $5/TB after 1TB
● LBL back-of-napkin calcs:

○ 1 year (2017) conn.logs = ~22GB/day, ~8T/year
○ $22K/year for first year of storage (only grows)
○ + $7.5K/year assuming 1 query/day
○ + $420K/year in streaming inserts for "real time"



UNCLASSIFIEDTLP:WHITE

What else is LBNL working on?

(NextGen Blocking)



UNCLASSIFIEDTLP:WHITE

What else is LBNL working on?

(BOD 18-01 + WAF + Visibility)



UNCLASSIFIEDTLP:WHITE

What else is LBNL working on?

(Firewalls)



UNCLASSIFIEDTLP:WHITE

What else is LBNL working on?

(Cert Management)



UNCLASSIFIEDTLP:WHITE

What else is LBNL working on?

(Dorkbot)


